
Continuous Homomorphisms as Arithmetical Functions, 
and Sets of Uniqueness 

/. Kdtai 

This is a survey paper on the characterization of continuous group homomorphisms as arithmetical functions, 
and on sets of uniqueness with respect to completely additive functions. 

1 Introduction 

Let, as usual N, Z, Q, R, C be the set of positive integers, integers, rational, real, and complex 
numbers, respectively. Let Q x , Rx be the multiplicative group of positive rationals, reals, 
respectively. Let V be the set of prime numbers. 

For an arbitrary, additively written Abelian group G let AG, resp. A*G denote the classes 
of additive, resp. completely additive functions. A function / : N —• G belongs to AG 
if f(nm) = f(m) + f{n) holds for each pair of coprime m, n, and it belongs to Ac 

if the above equation holds for all pairs m,n e N. If G is written multiplicatively, then 
we shall write MG, MC instead of AG, A C , and the corresponding functions are called 
multiplicative, completely multiplicative. 

If G = R, then we shall write simply A, A* instead of 
If / € A*G, then its domain N can be extended to Q x by 

and the functional equation 

remains valid for every 
Let us assume that G is a topological group and is continuous at 1. Then 

for each a e Rx there exists the limit 

4> is continuous everywhere in R x , furthermore valid for all 
a, P e R x , ie. 4> is a continuous homomorphism of Rx into G. 

On the other hand, if is a homomorphism, then its restriction to the domain 
N is a completely additive function. 
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Let 5 be an /?-module, containing at least two elements, defined over an integral domain R 
which has an identity. Consider the set of all doubly infinite sequences (.. . s~\, SQ, S\, .,.) 
of elements of 5. We introduce the shift operator E whose action takes a typical sequence 
[s„) to the new sequence {.s,,+i}. If 

r 

is a polynomial with coefficients in R, we extend this definition by defining 

In this way we define a ring of operators which is isomorphic to the ring of polynomials 
with coefficients in R. Let / be the identity operator, and A := E — I. 

We shall say that an additive function / is of finite support, if it vanishes on the set of 
prime powers except possibly on the powers of finitely many primes. 

For z e R let ||z|| := min*eZ \z - k\. 

2 Characterization of log as an Additive Arithmetical Function 

The function f(n) = log n belongs to A*. Normally log is considered as a mapping Rx -*• 
R and in this context it is wellknown that continuity along with the functional equation 
f(xy) = f(x) + f(y) characterizes the logarithm up to a constant factor. Restricting the 
domain from Rx to N creates an interesting question: What further properties along with 
the (complete) additivity will ensure that an arithmetic function / is in fact clogn. 

The first result of this type was proved by P. Erdos [1] in 1946. 

Theorem 1 If f e A and Af(n) > Ofor all n, or f(n) -* oo (n -*• oo), then f(n) is a 
constant multiple o/log n. 

In [2] we proved 

Theorem 2 If f e A and lim inf A*/(/i) > 0 with some k e N, then f is a constant 
multiple of'log n. 

An important progress has been achieved by E. Wirsing [3] proving the following con­
jecture of Erdos. 

Theorem 3 / / / e AandAf(n) > —K with some constant K, then fin) = c log n+u(n), 
where u(n) is bounded and c is a suitable constant. 

Another one of Erdos's conjecture was proved in [4]. 

Theorem 4 IffeA and 

i ] T | A / ( n ) | — > 0 , (2.1) 

then f = c log. 
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Somewhat later the condition (2.1) was weakened by E. Wirsing. Namely, he proved 
in [5] 

Theorem 5 Let f e A. Assume that there exists a constant y > 1 and a sequence 
x\ < X2 < ... such that 

Then f = c log. 

By making use of very original new ideas and some deep results on the distribution of 
primes in arithmetical progressions, E. Wirsing [6] proved 

Theorem 6 If f e A* and Af(n) = o(log n), then f(n) = clog n. 

One can show easily that the following generalization of the preceding theorems hold true. 

Theorem 7 

(1) Letf,geA.If 

(a) g(n + 1) - /(/i) -> 0, then f = g = c log; 
(b) g{n+\) —f{n) is bounded, then f{n) = c log n+u(n), g(n) = c log n + v(n), 

and u, v are bounded. 

(2) Letf,ge A*. Ifg(n + 1) - / («) = oflog n), then f(n) = g(n) = c log n. 

For the method of the proof of Theorem 7 see [7], [8]. 
In [9] and [10] I asked for a characterization of those additive functions which satisfy 

(2.2) 

for some integers a > 0, A > 0, b, B, and real constant C. I considered it with B = 0 and 
small values of a and b in [9] and [10]. 

With general a and b but still with 5 = 0 satisfactory results has been achieved by 
Mauclaire [11]. 

Elliott solved this problem completely. Namely he demonstrated in [12] that if (2.2) 
holds, then there is a constant F such that 

f(m) = F log m 

holds for all m coprime to aAA, where A = aB — Ab, assuming A ^ 0. Moreover he 
could give the values of / for those prime powers pa for which p\aAA. 

Another important assertion proved by Elliott is formulated as 

Theorem 8 Assume that aAA ^ 0. There exist positive constants c,c\ so that 



186 /. Kdtai 

holds uniformly for all integers m and n which satisfy 2 < m < n < em and are prime to 
a A A. Here 

L(x) = max \f(an + b) - f(An + B)\. 
n<xc 

The constants c, c\ may depend ona,b. A, B. 

The best source for the proof of this theorem and other important results is the excellent 
book of Elliott [13]. Theorem 8 generalizes a result of Wirsing [6] which sounds as follows: 

Let 8(x) be a positive non-decreasing function so that B(x2) < 26/5B(x). Let f e A 
such that / (2) > 0 and f(n + 1) — f{n) < B(n), for every n e N. Then, there is a suitable 
constant y so that 

uniformly for 2 < m < n < em. 
We shall say that a sequence of real numbers tn(n e N) is tight if 

(2.3) 

A. Hildebrand [14] proved that / ( n + 1) — / («) , / e A has a limit distribution if and 
only if there exists a constant c such that h(n) := f(n) — c log n satisfies 

Though explicitly it was not formulated but from this argument the following assertion 
follows immediately 

Theorem 9 Let f e A Then (2.3) holds for tn = f(n + 1) - f(n), if and only </(2.4) 
is satisfied. 

Later Elliott [15] went on to prove the following more general 

Theorem 10 Let a > 0, A > 0, b, B be integers which satisfy a B ^ Ab, and rj(x) a real-
valued function defined for x > 2. Let f\, fj € A, and n(x) be an arbitrary function. Let 

. 
x 

The following three propositions are equivalent. 

(1) There is an n(x) so that the frequencies Fx(z) converge weakly to a distribution 
function as x —*• oo. 

(2) There is an n(x) so that 
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(3) There are real numbers c\, C2 such that for hj (n) := fj (n) - Cj log n the conditions 

twn(lth
2Jp)) 

2 - n < 0 ° 

hold. 

Let (p : [0, oo) -* [0, oo) be a so-called subadditive function, i.e. monotonically increas­
ing, (p(x) —• oo as x —>• co, and the condition 

<p(x + y) < c\ ((p(x) + <p(y)) for x, y > 1 (2.5) 

holds with a suitable constant c\ > 0. 
We are interested in giving necessary and sufficient conditions for an additive / to satisfy 

Applying the argument we used in our paper [ 16] written jointly with Indlekofer, one gets 

Theorem 11 Let <p be a subadditive function. The relation (2.6) holds for an additive 
function f if and only if there exists a constant c such that h(n) := f(n) — c log n satisfies 
(2.4) and 

where qm runs over the set of prime powers. 

Proof: Necessity. Assume that (2.6) holds. Then A/(n) is a tight sequence, and so, 
by Theorem 8 we obtain the fulfilment of (2.4). Since A/(n) = A/?(n) + o(l), there­
fore £,n<x<p(\Ah(n)\) <3C x. Let h(n) be written as the sum of the additive functions 
h i (n), hi(n), where h \ is a strongly additive function defined for primes q such that 

and hj{n) is defined by . 
From (2.5) one gets easily that <p(x) <K xc for x > 1 with a suitable constant c. Further­
more, from the generalized Turan-Kubilius inequality due to Elliott (see Lemma 1.4.[13]), 
together with (2.4) we obtain that Y,n<x <P(|A/ii(n)|) < Yln<x |A/ii(n)|c «: x, con­
sequently, from the assumptions (2.6), (2.5), and |A/i2(n)| < \Ah[(n)\ + \Ah(n)\ we 
obtain thatwith a suitable constant C3, for all x > 2. From (2.8) we obtain (2.7) readily. Let V be the 
set of those primes q for which \h(q)\ > 1. As we know (see (2.4)) £ € p q < °°. Let us 

choose an arbitrary Y > 1. For all/3, (2 <)2^ < Y consider those integers n = l^y, y odd 



188 /. Kdtai 

for which y(n + 1) is square-free and coprime to V. By making use of the Eratosthenian 
sieve we can see that the density of these integers is ^ with a positive constant e which 

may depend only on V. Since and the sequences defined for different 
P are disjoint ones, from (2.8) we get that 

Let now B = [qm, q > 2, m > 2} U [q e V, q £ 2}. Let Q < Y, SQ be the set of those 
integers n = 2Qv for which v is odd, and v(2Qv + 1) is square free and coprime to V. 
By the Eratosthenian sieve we obtain that the asymptotic density of SQ is > e\/Q with a 
positive constant e\. Since hj(2Qv) = hi(2) + /12(G), and the sets «Sg are disjoint, we 
obtain that 

Hence we get (2.7) immediately. 
Sufficiency. Assume that (2.4), (2.7) hold true. Since <p(\Af(n)\) <£ ^(|cA log n\) + 

(p(\Ah\(n)\) + (p(\Ah2(n)\), therefore summing over n up to x, the first two sums on the 
right hand side are bounded by x, it remains to prove that 

which will follow if we show that 

Let T denote the set of those integers D for which p\\D implies that /»2(p) ^ 0. The left 
hand side of (2.10) is bounded by 

On the right hand side both sums are convergent, and the proof is complete. 

where a)(n) is the number of distinct prime divisors of n. Thus we have 

Iterating (2.5) we obtain that 
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holds. 

As a special case we have the following 

Corollary 1 Let f e A. The inequality 

holds with some constant a > 0, if and only if there is a suitable constant c such that for 
/i(n) := fin) - c l o g n 

and 

hold. 

This assertion for a = 2 was proved earlier by Elliott [17]. 

3 Characterization of ns as a Multiplicative Function 

In a series of papers ([18] I-VI) I considered functions / e M under the conditions that 
A/(n) tends to zero in some sense. I could determine all those functions f,g£ M* for 
which the relation 

with some fixed k €N holds. Namely I proved the following assertions. 

Theorem 12 and (3.1) holds with k = 1, then either 

Theorem 13 Let f, g € M* and k > 2 be fixed. Assume that (3.1) holds, furthermore 
that f(n) = gin) = 0 if(n,k) > 1 and f(n) # 0, g(n) ^ 0 if(n,k) = 1. 7Y*en 
either (3.2) « satisfied or there exist F,G e M* and s such that 

and 
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In [18, IV] I determined all the solutions of (3.4) for completely multiplicative pairs 
of F, G and in [19] even for F,G e M under the additional condition that F(n) /= 0 if 
(n, k) = 1. The above assertions are not obvious even in the case g = f. 

An immediate consequence of Theorem 12 is that Y = oo, 
where A. is the Liouville function. This shows that the size of the integers n for which 
k(n) ^ X(n + 1) is not too small. 

Recently in a joint paper with B.M. Phong [20] we proved 

Theorem 14 Let k e N be fixed. Assume that F,G e M and (3.4) is satisfied. Then 
either 

SF := {n\F(n) £ 0} and SG := {n\G(n) # 0} 

are finite sets, or F(n) ^ Ofor every n coprime to k. 

A special case was treated earlier in [21]. 
In [22] I formulated the following 

Conjecture 1 If / e M and 

then either 

- or f(n) = ns,ms < 1. 

Towards this conjecture, a few partial results are known. 
First, assuming that (3.6) does not hold, from (3.5) one can deduce that / € M*. This 

assertion was explicitly proved by Mauclaire and Murata [23] for functions / of modulus 1, 
but their method can be applied to the general case. 

The second observation is that either \f(n)\ > 1 for every n, or (3.6) holds. Indeed, let 

According to(3.5), the second sum on the right hand side is smaller thane, (e > Oarbitrary), 
if A is large enough, the first sum is qQS([^-] + 1), consequently, 

whence S(x)/x -*• 0 immediately follows. 
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Moreover arguing similarly, one can deduce that if (3.6) does not hold, then \f(n)\ = na 

with a constant a, 0 < a < 1. Let t(n) := f(n)n~a, and assume that a > 0. Since 
therefore 

The right hand side is clearly convergent, therefore Theorem 12 can be applied, whence we 
obtain that t(n) = niT, r e R, i.e. f(n) = ns, 0 < 9ts < 1. 

The case, when / (n) is of modulus 1 seems to be very hard. Hildebrand [23] proved 

Theorem 15 There exists a positive constant c with the following property. Ifge M*. 
\g(n)\ = 1 far n 6 N and for every p e V, \g(p) — 1| < c, then either g(n) = 1 
identically, or 

Let ft denote the set of all arithmetical functions having complex values. / e ft is 
considered as an infinite dimensional vector, the n'th coordinate of which is f(n). Let 
a > 1 be a constant and be the subspace of ft which consists of those x e ft for which 

and 

By using the ideas of Hildebrand and some of mine, I obtained [18, VI.] 

Theorem 16 Let g e M*, \g(n)\ = \forn e N. There exist positive constants ft < 1 and 
S such that 

imply that g(n) = 1. 

be a slowly varying function, i.e. such that 

is finite. 

file:///forn
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In a joint paper with Indlekofer [24] we proved 

Theorem 17 / / / € M, P € C[z], P £ 0, k = deg P, and 

then either where and 

The next assertion was proposed by myself as a conjecture and proved by Wirsing in 1984. 

Theorem 18 If f e M, A/(n) -+ 0 as n -> oo, then fin) —• 0 as n -> oo or 
f(n) = ns,0<Ms < 1. 

This theorem has been proved some years later independently by Tang and Shao. The 
joint paper of Wirsing, Tang and Shao [25] contains two different proofs. 

Wirsing's theorem can be formulated in the following way: If F e .4 and ||AF(/i)|| —*• 0, 
then with some suitable constant A. e R we have that F(n) — k log n is integer for every 
n € N. 

In other words, if T is the group of the reals mod 1, and F € AT, AF(n) -*• 0, then F 
is a restriction of a continuous homomorphism from Rx to 7". 

B.M. Phong proved the following generalization of Wirsing's theorem. 

Theorem 19 Let A, B be positive integers and let D be a real constant. Ifh e AT and 

then h is the restriction of a continuous homomorphism: 

For A = 1 this assertion was generalised by Tang [29]: 

Theorem 20 Let B be a fixed positive integer, f a multiplicative fimction defined on the set 
of the integers n coprime to B, such that \f(n)\ = 1 and f(n + B) — f(n) -> 0, n -*• oo. 
Then there must be a x e R such that f(n) = n'rXfl(«), where / a (n) is a Dirichlet-
character mod B. 

By using this assertion one can completely characterize all those multiplicative functions 
/ of modulus 1, for which P(E)f(n) - ) holds. (For this see [18,1]) 

In a joint paper with N.L. Bassily [28] we proved 

Theorem 21 Iff, g e M and g(2n +1) — Cf(n) -*• 0 with some nonzero constant C, then 
either f(n) = ns,0< Ms < I, and g(n) = f(n)for 
every odd n. 

The complete description of those for which g(An + B) — Cf(an + b) -*• 
0 (n -> oo) is not given yet. 
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4 On Additive Functions mod 1 

T is considered here as the additive group R/Z. We say that F e AT is of finite support 
if F{pa) = 0 holds for every large prime p, and every or € N. For Fv e AT{V = 
0,1 i t - 1 ) let 

(4.1) 

Conjecture 2 Let be the space of those fc-tuples (Fo , . . . . Fk- i) of Fv e AT for which 

(4.2) 

holds. Then each Fj is of finite support, and £ 0 is a finite dimensional Z module. Let 
Gj(n) log n (modi as 

Conjecture 3 If and 

then there exist suitable real numbers , and for 
Hj(n) := Fj(n) — Ty log n we have 

Remarks: 

1. Conjecture 3 for it = 1 can be deduced easily from Wirsing's theorem. 
2. Conjecture 2 was proved for k = 3 under the more strict condition that Fv e A*T 

in [30]. We obtained that (4.2) implies that Fv = 0 (v = 0, 1, 2) identically. 
3. Conjecture 2 for it = 3 was proved completely by R. Styer [31]. 
4. M. Wijsmuller treated similar problems for additive functions defined on the set of 

Gaussian integers taking values from T. See [32], [33]. 

Let P(n) be the largest and p{n) the smallest prime divisor of n. 

Conjecture 4 For every integer it(> 1) there exists a constant ck such that for every prime 
p greater than ck, 

holds. 

We are unable to prove it even for k = 2. 

Proposition 1 Let £Q ( / ) be the space of those I-tuples for which 
*(/) 

L„(Fo, • ••. Fi-\) = 0 (n 6 N). Assume that Conjecture 4 is true for k = 1. Then £0
V is 

a finite dimensional space. 
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Proof: Let (Fo, . . . , F/_i) be such an element of CQ
K' for which Fj(q) = 0 for every 

q < max(c/, /) and j = 0 , . . . , / — 1. We shall prove that Fj(n) = 0 for every n e N, / = 
0 , . . . , /— 1. Assume the contrary, and let M be the smallest integer for which Ft{M) ^ 0 
for some t € {0 , . . . , /— 1}. Then M should be a prime. Since 

/ 

from (4.3), by choosing that j for which (4.3) is attained (with M = p), we obtain that 
Ft(M) = 0. 

Hence itfollows that the initial values Fj(q), j = 0 , . . . , / — 1 ; q < max(c/, /) completely 
determine the functions Fj, if they are correlated according to (4.2). 

The proof is complete. • 

Let K be the closure of the set 

Conjecture 5 If and K contains an element of infinite order, then 
K = T. 

This conjecture is obvious if k = 1, and it seems to be hard for k > 2. Recently, in our 
joint papers with M.V. Subbarao [34], [35] we obtained some partial results. This will be 
explained in the remaining part of this section. 

Let F/t = [u/k\u = 0, 1 , . . . , k — 1}, i.e. the group of those elements a e T for which 
ka = 0. A special case of Conjecture 5 would be 

Conjecture 6 Let / e Aj, and H = [ct\,..., a*} be the set of the limit points of the 
sequence / ( « + 1) — f(n)(n e N). Then 7i = F*, and there exists a real number T such 
that f{n) = r log n + U(n) (mod 1), t/(N) = F*, and for every w e f j there exists a 
subsequence nv of integers such that 

We proved 

Theorem 22 

1) Conjecture 6 is true for k = 1,2,3. 
2) Let k = 4, and assume that the conditions of Conjecture 6 are satisfied. Then there 

is a T € K st/crt //wf /(/i) = r log n + U(n) (mod 1) and either (A) or (B) hold: 

(A) H - F4 , */(N) c F 4 

(B) H consists of four distinct elements 0/F5, i.e. H = {K'1 , K'2 , K'3 , K'4 }, w/zerie K 
/5 any nonzero element 0/F5, moreover UiN) C F5 and f/(n + l) — Uin) €H 
for every large n. 

Remark: We think that case (B) cannot hold, which would follow if we could prove that 
f/(N) = F5 implies that for every a e F5, Uin + 1) - £/(n) = a occurs infinitely often. 
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5 Characterization of Continuous Homomorphisms 
as Elements of AG for Compact Groups 

We investigated this topic in a series of papers written jointly with Z. Daroczy [36-41]. 
Assume in this section that G is a metrically compact Abelian group supplied with some 

translation invariant metric Q. An infinite sequence {JC„ }^_, in G is said to belong to £D, if for 
every convergent subsequence xni,x„2,... the "shifted subsequence" x„i + \, x„2+\,... is 
convergent, too. Let £& be the set of those sequences 

holds. Then We say that f e A*G belongs to 
if the sequence belongs to £& (resp. Sp). 

We proved the following assertions. 

(1) AG(A) = AG(D). 
(2) If / e AG(D), then there exists a continuous homomorphism $ : Rx —> G such 

that f(n) = <D(H)(/J € N). 
The proof of (2) was based upon the theorem of Wirsing (Theorem 18). 
The set of all limit points of [f(n)]^Ll form a compact subgroup in G which is 
denoted by Sf. 

(3) / e AG(D) if and only if there exists a continuous function H : 5 / —*• Sf such 
that f{n + 1) - / / ( / ( « ) ) - > 0 as n -*• oo. 

(4) In [41] we characterized those / e AG for which with some continuous function 
F : Sf -+ Sf the relation /(2/i - 1) - F(f(n)) -»• 0 (n -+ oo) holds. For G = 7 
we obtained that either f{n) = 0 for every odd n, or there exists a nonzero X e E 
such that f{n) = k log n(mod 1) for every n e N. 

(5) In [44] we solved the following problem. Let G \, GT be metrically compact Abelian 
groups with some translation invariant metrics. Let / e Ac , g e A*G , and assume 
that with some continuous function F : Sf -* Sg the relation g(n— l) — F(f(n)) -*> 
0 (n —*• oo) holds. E.g. for G\ = F w e proved: Under the above conditions, either 
g(n) = 0 identically, or there exist r e R, M e N, // € AEM such that f(n) = 
^ l o g n + u(n) mod 1. Let X(n) := Mf(n)(n e N). Then the correspondence 

generates a topological isomorphism between Ŝ  and 5S. The 
converse assertion is also true. 

(6) Further interesting results were obtained by Phong [42], [43]. 
(7) The main problem we are interested in is the following one: 

Let / ; e ACJ 0 = 0 k - 1), Gj be compact groups, en := {fo(n), f\ (n + 1), 
. . . , fic-\(n+k- 1)}. Thene„ G 5/0 x • • • x 5/ i_,(=: U). What can we say about 
the functions fj if the set of limit points is not everywhere dense in Ul We shall 
formulate our guesses only for special cases. 

Conjecture 7 Let / e A*T,Sf = T,e„ = (/(«) f(n + k - 1)). Then, either 
f(n) = k log n (mod 1) with some k e R, or [e„\n e N] is dense in 7* = 7" x • •• x 7\ 

Conjecture 8 Let f,g e A*T,Sf = Sg = T,en := (f(n),g(n + 1)). If e„ is not 
everywhere dense in Ti — T x T, then / and g are rationally dependent continuous 
homomorphisms, i.e. there exist k e R, s e Q such that g(n) = ^/(«)(niod 1), f(n) = 
A. log n (mod 1). 
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Mauclaire proved in [45] that if G is an arbitrary locally compact group and / € AG 
satisfies Af(n) —• 0 (n —• oo) then / is the restriction of a continuous homomorphism 
<p : Rx -*• G. Ruzsa and Tijdeman proved [46] that it cannot be generalized for all groups. 

6 Sets of Uniqueness for Completely Additive Functions 

Definition: We say that E C N is a set of uniqueness for the functions belonging to A* if 
/ e A*, / ( E ) = 0 implies that / (N) = 0. 

I introduced this notion in [47], and in [48] it was proved that if to the sequence of 
"prime + one"s we adjoin a finite set of integers then we obtain a set of uniqueness. My 
guess that the set of shifted primes itself is a set of uniqueness, was proved by Elliott [49]. 

It was proved by Wolke [49], and Dress and Volkman [50], that in order for a set E to 
be such a set of uniqueness, it is necessary and sufficient that every positive integer n has a 
multiplicative representation: 

The h, k may vary with n. They used vector spaces over the field of rational numbers. 
In [52] Elliott proved my further conjecture, namely that if / e A*, M(x) = maxw<^ 

, then 

(6.1) 

holds with suitable numerical constants A, B. For the wider class / 6 A he got a weaker 
result, namely that 

for some C > 0. 
Wirsing extended (6.1) for / € A [53]. He proved that every n e N has a representation 

where h and k are bounded, E, = ± 1 , and the primes p{ lie in an interval n < p{ < nB. 
In particular, Wirsing's result showed that for the multiplicative group K generated by the 
"prime plus one"s Q x /K has bounded order. 

Another interesting consequence of Wirsing's result is that / e A, f(p + l ) ^ 0 ( p e 
V) implies that/(n) = 0. 

My motivation with the investigation of the set of shifted primes was the following. 
In 1968 I proved [54] that / e A has a limit distribution on the set of shifted primes if the 

three series 

\f{p)\<\ ^ l/(/>)l<l ^ I/(P)I>1 ^ 

are convergent. But the question of the necessity of these conditions remained open. 
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The necessity of the convergence of the series was proved by additional assumptions: 
a) if f(p) > 0, by Elliott [55]; b) if f(p) = 0(1), by Katai [56]. Finally it was proved 
without any other conditions by Hildebrand [58] in 1988. From his result it follows that, if 
/ e A satisfies 

for every e > 0, then f(n) = 0 identically. 
The notion of sets of uniqueness can be extended into group valued arithmetical functions. 

Definition 2 Let G be an arbitrary Abelian group. We say that E c N is a set of uniqueness 
for the class of functions in A*G if / e A*c, f(E) — 0 implies that / (N) = 0. 

For G = T the following assertion has been proved by Meyer [58], Indlekofer [59], 
Dress and Volkman [51], see also Elliott [60]: 

In order that E would be a set of uniqueness for the class A*T it is necessary and sufficient 
that every positive integer n has a representation 

with some integers dj, positive, negative or zero. 
Probably, the set of "prime plus one"s is a set of uniqueness for Aj but it does not seem 

to be easy. Presently it is not disproved even that ^Q (p + 1) = 0 (mod 1) for every large p. 
In my paper [15] implicitly it was proved that there is a constant L such that every integer 

n has a representation 

where A is such a rational number in the reduced form of which all prime factors are less 
than L. The constant L was implicit, since I used the Bombieri-Vinogradov theorem. Later 
Elliott [61] proved that L = 10387 is appropriate. 

This bound is extremely large for computation. If we could reduce it to 1012, say, then 
with a massive computer calculation perhaps we could prove that K =QX. 

Recently Elliott [62] proved that the factor group /K is either trivial or is of order 2, 
or 3. 

Schinzel and Sierpinski in 1958 stated the conjecture [62], that every positive rational 
has infinitely many representations of the form (p + \)(q + 1)_1 with p,q eV. From this 
K = Qx would immediately follow. 

By using the method of Chen [63] one can prove that every natural number n has infinitely 
many representations of the form run over the integers 
the number of prime factors of which is at most 2. Consequently the multiplicative group 
K\ generated by set Pj + 1, where Pi runs over the integers having at most two prime 
factors equals to Q. 
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